# Steady State Numerical Model of COREX Melter Gasifier



# C. Srishilan and Ajay K. Shukla

Department of Metallurgy and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036

Email: c.srishilan@yahoo.com and shukla@iitm.ac.in

### **Salient features:**

- Alternate iron making process.
- Divided into reduction shaft and melter gasifier.
- Uses non coking coal unlike conventional process which lowers the cost of production.
- Reuse of top gas for pre-reduction of ores in reduction shaft.

### **Literature:**

- Velocity and temperature relation, effect on coal consumption.<sup>[1]</sup>
- Mole percent of gases and temperature relation, effect of bed height.<sup>[2]</sup>
- Temperature and mole percent relation, effect of volatility of coal. [3]

#### **Model description:**

It is a comprehensive model that tries to predicts temperature and mass flow rate at each node to optimize the input parameters for the required production rate.

- Melter Gasifier is divided into 4 zones namely:
  - Free board zone
  - Fluidized bed zone
  - Moving bed zone
  - Raceway zone
- Nine gas species: CO, O<sub>2</sub>, CO<sub>2</sub>, H<sub>2</sub>, H<sub>2</sub>O, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, tar, and soot.
- Ten solid species : Fe, Fe<sub>2</sub>O<sub>3</sub>, FeO, CaO CaCO<sub>3</sub>, C, ash, coal moisture, coal volatile, and gangue
- Three solid phases: DRI, coke and coal.

## Inputs:

- Production rate (required)
- DRI consumption
- Coal consumption
- Coke consumption

Oxygen consumption

Tuyere temperature

[1] Shin et. al. , ISIJ Int., 1993

[9] Tsay et. al., AIChe J., 1976

[3] Pal et. al., Met. and Mat. Trans. B, 2003

#### **Calculations:**

- Mass flow rate of all solid and gas species
- Mass generation rate of all solid and gas species
- Temperature of all the three phases (gas, solid, and liquid)
- Rate of reactions using mole percent of species

## Output:

- Temperature and mass flow rate at each node
- Mole percent of gaseous species.

## **Assumptions:**

- Raceway zone is considered to be two dimensional and rest of the gasifier is considered as one dimensional.<sup>[4]</sup>
- Fluidized bed is considered to be full of gas
- Oxygen gets consumed totally in raceway zone

## **Calculations:**

• Mass balance equation for solid and gas in 1D and fluidized bed zones

$$\frac{d(A_b G_i)}{dz} = A_b \dot{G}_i$$

• Heat balance equation for solid and gas in all 1D and fluidized bed zones

$$\frac{d(A_b G_i C p_i T_i)}{dz} = \sum_{phases} A_b a_{ij} h_{ij} (T_i - T_j) + A_b \Delta H_{reac. or melt. i}$$

• Momentum and continuity equation for gas in 2D zone [5]

$$-\frac{\partial P}{\partial z} = (f_1 + f_2 |G_g|) G_g^z \text{ and } \frac{\partial G_i^z}{\partial z} + \frac{1}{r} \frac{\partial (rG_i^r)}{\partial r} = A_b \dot{G}_i$$

• Chemical reaction rates:

Oxidation of carbon Carbon gasification reaction [6]  $\dot{R} = \frac{A_c}{\frac{6}{d_p k_p E_f} + \frac{1}{k_f}} \times \frac{9.868 \times 10^{-6} P_{re}}{\frac{M_{wr} RT}{M_{wr} RT}}$ Water-gas reaction

Cracking of volatiles<sup>[7]</sup>

Reduction of Fe2O3 and FeO<sup>[8]</sup>  $\dot{R} = A_{re}e^{B_{re}/T}\chi_{re} \times \frac{P}{RT}$ 

Calcination of CaCO3 [9] 
$$\dot{R} = A_{re}e^{B_{re}/T}(1-\xi) \times (1-\frac{\chi_{re}\xi P}{(1-\xi)K_{eqm}})$$

• Notations :

i,j: phases $\xi$ : conversionre: reaction $\chi$ : mole fraction

eqm: equilibrium



[2] Lee et. al., ISIJ Int., 1999

[4] Viswanathan et. al., ISIJ Int., 1998

Figure 1 : Flow chart of calculated variables in this model

[5] Ergun, Chem. Eng. Process, 1952 [6] Yagi et. al., Trans. ISIJ, 1970 [7] Mori et. al., ISIJ Int. 1999 [8] Morell et. al. Chem. Eng. Sci. 1990

## Computational domain DRI, coke, and coal feed **Export** gas Free board $H_f$ Fluidized bed $\boldsymbol{H}$ Moving bed (1D Computational zone) $Z\iota$ -Raceway zone (2D Computational zone) Oxygen injection (0, Q) $R_c$

Figure 2 : Schematic of computational domain, cylindrical coordinate is used for 2D zone

## **Conclusion:**

The above steady state numerical model of COREX melter gasifier is developed.

## **Future work:**

Verification with industrial data.